Code: EC3T3

II B.Tech - I Semester-Regular/Supplementary Examinations November 2017

SIGNAL AND SYSTEMS
 (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Write Basic operations on signals.
b) Obtain the Fourier transform of Signum Function
c) State the properties of impulse signal .
d) Derive the Laplace Transform of signal $u(t-a)$.
e) Write properties of Region of Convergence Laplace Transforms
f) Find the initial value and final value of $X(s)=\frac{1}{s+3}$.
g) Find the z-transform of $x(n)=(3)^{n} \cdot u(n)$
h) Give expression for discrete convolution and write its properties
i) Check whether the signal is periodic or aperiodic signal. $e^{-a|t|} \mathrm{u}(\mathrm{t})$
j) State and prove Time Convolution property of Fourier Series.
k) What is aliasing?

PART - B

Answer any THREE questions. All questions carry equal marks.
$3 \times 16=48 \mathrm{M}$
2. a) Explain various continuous time signals.
b) Check whether the following systems are linear, causal, stable and time invariant.
i) $y(n)=x(n)-x(n-2)$
ii) $y(n)=a^{n} \cdot u(n)$
3. a) Find the Fourier series expansion of the half wave rectified sine wave shown below. 8 M

b) Explain the Exponential series in detail. Obtain the relation between exponential and Fourier Series Coefficients . 8 M
4. a) State and prove the following properties of Laplace Transform.
i) Initial value theorem, ii) Convolution property iii) Final value theorem.
b) Find the response of a system with transfer function $H(s)=1 /(s+4)^{*}(s+5)$ with input $x(t)=e^{-2 t} u(t)$.

5. a) Discuss the properties of DFS.

b) Prove the following properties of DTFT: 8 M
i) Time convolution
iii) Periodicity
ii)Parseval's relation
iv)Time reversal
6. a) Find Z-transform of the following signals and sketch Pole-Zero plot with ROC.
i) $x(n)=a^{n} u(n)-b^{n} u(-n-1)$
ii) $x(n)=a^{n} \cdot \sin \omega n \cdot u(n)$
b) Find the inverse z - transform of the following: $\quad 8 \mathrm{M}$
i) $X(z)=\frac{z^{2}+2 z}{z^{3}-3 z^{2}+4 z+1} ; \operatorname{ROC}|z|>1$,using Long Division method.
ii) $\mathrm{X}(\mathrm{z})=\frac{3 \mathrm{z}}{(\mathrm{z}-1)(\mathrm{z}-2)}$ plot ROC for $|\mathrm{z}|>2,|\mathrm{z}|<1,1<|\mathrm{z}|<2$

